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Zusammenfassung

In dieser Arbeit haben wir den Kontaktprozess, der von Harris [3] 1974 erst-

mals beschrieben wurde, um Diffusion erweitert und deren Einfluss auf das

Skalenverhalten und das kritische Verhalten untersucht. Der Kontaktprozess

ist ein einfaches Model für einen epidemischen Ausbreitungsprozess. Er zeigt

einen kontinuierlichen Phasenübergang in einen absorbierenden Zustand. Da

die Existenzen eines solchen Zustands die detailierte Balance verletzt, handelt

es sich um einen Nicht-Gleichgewichts-Übergang.

Nahe des Phasenübergangs divergieren zeitliche und räumliche Korrelations-

längen, was sich im skaleninvarianten Verhalten des Kontaktprozess äußert. So

kann ein System durch eine korrekt ausgeführte Reskalierung in ein System an-

derer Ausdehnung überführt werden. Die damit verbundenen Skalenexponen-

ten zeigen, dass der Kontaktprozess in die Universalitätsklasse der gerichteten

Perkolation einzuordnen ist.

In dieser Arbeit untersuchen wir, wie sich Diffusion, die wir als Hüpfprozess

zwischen benachbarten Gitterplätzen einführen, auf die Eigenschaften solcher

Systeme auswirkt. Von besonderem Interesse ist hier der Einfluss der Diffu-

sionsrate auf die Skalenexponenten und den kritischen Kontrollparameter.

Wir beginnen mit einer Einführung in die Phänomenologie des diffusiven

Kontaktprozesses in der wir die drei Skalenexponenten der gerichteten Perko-

lation definieren. Anschließend zeigen wir, dass eine korrekte Beschreibung des

Verhaltens mittels Mean-Field Rechnung nicht möglich ist und motivieren so

die Verwendung von Feldtheoretischen Methoden. Im darauf folgenden Kapi-

tel zeigen wir im Detail, wie der diffusive Kontaktprozess mit einer Feldtheorie

beschrieben werden kann. Im Zuge der Ein-Schleifen-Korrektur werden der

kritische Kontrollparameter berechnet und der Zusammenhang zum Skalenver-

halten hergestellt.

Im Anschluss an diese Rechnung präsentieren wir numerische Ergebnisse für

die berechneten Größen, die wir mittels Monte Carlo Simulationen ermittelt



haben.

Wir schließen die Arbeit mit einer numerischen Lösung der Ein-Schleifenkorrektur.
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1. Introduction

Phase transitions are an import field of research in physics. They occur in a

wide range of processes in environment and many processes in nature depend

on them. Common examples for phase transitions are the melting and vapor-

ising of water, the super conductivity of metals at low temperatures and the

transition to paramagnetic behaviour observed in ferromagnetic materials.

Phase transitions can be divided into to two main groups, the first order and

the continuous phase transitions. The former are characterised by the existence

of latent heat which is released or absorbed at the transition. Melting ice or

vaporising water belong into this case. The continuous phase transitions don’t

show this behaviour. Instead they are characterised by diverging correlation

lengths at the transition. This kind of phase transitions can be observed in

Ising magnets or the directed percolation model.

As a consequence of the diverging length scales, observables behave as power

laws close to the transition. These are characterised by certain critical ex-

ponents which often depend on the dimensionality of the system. Therefore

systems which show a continuous phase transition are scale invariant under

appropriate rescaling of parameters, lengths and times. Wilson [15] discovered

that this behaviour can be described by a renormalisation group approach.

Considering the scaling exponents, continuous phase transitions can be clas-

sified into several universality classes. Because of its robustness against mod-

ifications, the directed percolation universality class plays an important role

here.

Directed percolation was introduced as a simple model of a spreading process

by Broadbent and Hammersley [1] fifty years ago. For instance it can be inter-

preted as wetting of a porous material where the wetting media has a preferred

direction of flow. In this model the material is represented by a diagonal cubic

lattice where each site is connected to adjacent sites with a certain probability.

The probability plays the role of the control parameter of the phase transition.
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1. Introduction

Depending on its value the media can penetrate infinite deep into the material

or the wetting stops at a certain depth. If once all sites of layer are dry, the

system is captured in an absorbing state. Therefore directed percolation is a

non equilibrium process.

The directed percolation universality class is characterised by the three crit-

ical exponents β, ν‖ and ν⊥ which describe the scaling of the particle density,

of the correlation length parallel and perpendicular to the preferred direction

of flow.

Another possibility to represent the directed percolation model, is to inter-

pret the preferred direction as a time and wet sites as particles on a cubic

lattice. This picture is called the ’contact process’. Here the wetting or not

wetting of adjacent site corresponds to creation of particles on empty sites by

neighbouring particles and the spontaneous death of particles. In this dynamic

description the death of particles occurs with rate 1 and the creation rate λ

plays the role of the control parameter.

Based on this model a generalised diffusive contact process can be defined by

introducing diffusion of particles. Besides creation and annihilation, particles

can hop to neighbouring sites with a rate D in this model. As diffusion enhances

the mixing of the lattice one expects that the system crosses over from a directed

percolation to a mean field behaviour for increasing diffusion constants.

In a recent work Dantas et al. [2] studied the one dimensional diffusive con-

tact process. They showed that the crossover can be described in terms of a

crossover exponent φ. Using series expansion and partial differential approxi-

mants they found that in one spatial dimension 3 ≤ φ ≤ 4.

In this work (published as [9]) we use a field theoretic approach to verify

this result and to extend it to higher spatial dimensions. Furthermore we

present results of extensive Monte Carlo simulations in order to confirm our

calculations.

We start our analysis with an introduction into the phenomenological prop-

erties of the diffusive contact process in chapter 2. After that we show that a

mean field description does not give the right results in order to motivate the

use of a field theory. We continue with a detailed explanation of the field the-

oretic treatment in chapter 3. In the last chapter 4 we evaluate the numerical

data from Monte Carlo simulations and compare the results with our analytical

proposals.
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2. Mean field analysis

2.1. Phenomenology of the diffusive contact

process

The diffusive contact process is a toy model for an epidemic spreading pro-

cess. It is defined on an infinite large d-dimensional hyper-cubic space lattice.

Infected individuals are represented as particles which reside on the sites of

this lattice. As on each site only one particle is allowed to reside, the particle

density can not exceed one:

0 ≤ ρ (t) ≤ 1. (2.1)

The evolution in time occurs in a random sequential manner which means, that

a random lattice site is chosen and if it is occupied one of the three possible

moves is performed. Introducing reaction rates, which describe how often such

a micro process occurs in a unit time interval per particle, these moves may be

defined as follows:

1. An existing particle creates new particles on empty next neighbouring lat-

tice sites with rate λ/d with d being the spatial dimension of the system.

For example in one space dimension there are the two possibilities

λ/2

yysssssssss
λ/2

%%
KKKKKKKKK

(2.2)

for this reaction.

2. A particle hoops to a random neighbouring site with rate D if this site is

3



2. Mean field analysis

empty. In one space dimension this corresponds to

D/2

yysssssssss
D/2

%%
KKKKKKKKK

. (2.3)

3. A particle dies with rate one.

1
²²

(2.4)

In addition to the explicit diffusion micro process, the creation and death of

particles cause an intrinsic diffusion. This happens when a particle creates

offspring and dies afterwards:

λ/2

yysssssssss
λ/2

%%
KKKKKKKKK

1
²²

1
²²

(2.5)

This set of dynamic rules clearly generates an absorbing state which, once

entered, can not be left anymore. This state is characterised by an empty lattice

and will be reached after a finite time for creation rates λ below the percolation

threshold λc as shown in figure 2.1. For λ > λc the system stays in the active

state and the density of particles becomes a constant after a sufficient amount

of time. Close to the phase transition this stationary density behaves as

ρstat ∼ (λ − λc)
β for λ > λc (2.6)

where β is the critical scaling exponent of the particle density.

Another import property of the diffusive contact process and of continuous

phase transitions in general is related to the spatial and temporal correlation

lengths ξ̃⊥ and ξ̃‖. They may be defined as follows: In a super-critical system

4
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Figure 2.1.: Time evolution of average particle density ρ (t) in dependence of
creation rate. The graph shows the saturation for super-critical systems (red
line), the power law decay at criticality (green line) and the exponential decay
in sub-critical systems (blue line).

the spatial correlation length can be regarded as a measure for the diameter of

empty regions and the temporal correlation length is proportional to the time

an area stays unoccupied as shown in figure 2.2(a). For sub-critical systems it

is more sensible to relate the correlation lengths to the decay time of a cluster

and its extend at the origin like in figure 2.2(b).

As systems contain holes and clusters of different sizes it is sensible to study

the distribution of these correlation lengths. In figure 2.3 the spatial auto-

correlation function of a one dimensional system is shown. This function is

proportional to the distribution of spatial correlation length ξ̃⊥. Away from

criticality the distribution decays exponentially for large correlation lengths.

Indeed for small correlation lengths a power law behaviour emerges. Because

of the exponential decay it is possible to define an average correlation length

ξ⊥ respectively. Upon approaching the critical percolation threshold the power

law behaviour supersedes the exponential decay. Hence the average correlation

length increases until it diverge at criticality. The same holds for the average

temporal correlation length ξ‖.
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2. Mean field analysis

ti
m

e

space

ξ̃⊥

ξ̃‖

(a) In super-critical systems
the extend of the empty re-
gions defines the correlation
lengths.

ti
m

e

space

ξ̃⊥

ξ̃‖

(b) For sub-critical systems the correlation length can de-
fined through the the base line and the height of the active
clusters.

Figure 2.2.: The plot shows the time development of a one dimensional diffusive
contact process. The graphs depict a cut out of the lattice for a certain time
interval.

The behaviour upon approaching the phase transition can be described as

ξ⊥ ∼ |λ − λc|−ν⊥ , ξ‖ ∼ |λ − λc|−ν‖ (2.7)

which defines the two scaling exponents ν⊥ and ν‖. At the phase transition,

when λ = λc, one also observes a power law behaviour of the density

ρ (t) = t−δρ (1) (2.8)

where δ = β/ν‖ is a combination of the previously introduced exponents.

By varying the diffusion constant D, the diffusive contact process can be

tuned to behave as the ordinary non diffusive contact process (D = 0) or

to a fully coupled mean field regime (D → ∞) where all sites are mutually

coupled. This is called the crossover from directed percolation to diffusive

contact process.
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Figure 2.3.: Auto-correlation function of a one dimensional diffusive contact
process measured at time-point t = 100000. The power law behaviour for short
correlation lengths becomes an exponential decay with increasing correlation
length ξ̃⊥. Upon approaching the critical percolation threshold λc ≈ 3.2979
the power law part of the distribution widens.(Fixed simulation parameters:
diffusion constant D = 0)

2.2. Mean field equation

Denoting the probability, that a lattice site at i is occupied at time t by

Pt (i)

we calculate the occupation probability at time t + 1 by considering the dy-

namical rules described previously. According to these prescription we find the

following contributions to Pt+1 (i):

Pt (i): the probability the site i was occupied at time t,

λ
2d

∑

j∈NN (1 − Pt (i)) Pt (j): (the sum runs over nearest neighbours) the prob-

ability the site i was not occupied at time t but a particle was created by

a neighbouring particle at this site.

D
2d

∑

j∈NN (1 − Pt (i)) Pt (j): the probability the site i was not occupied at time

t but a neighbouring particle diffused to the site it.

7



2. Mean field analysis

−D
2d

∑

j∈NN Pt (i) (1 − Pt (j)): the probability the particle on the site i hopped

to a empty neighbouring site.

−Pt (i): the probability the particle died.

Summing over these terms yields the master equation

Pt+1 (i) =
λ

2d

∑

j∈NN

(1 − Pt (i)) Pt (j) +
D

2d

∑

j∈NN

(Pt (j) − Pt (i)) (2.9)

which describes how the probability, that a lattice site i is occupied by a particle

at time t + 1, can be computed from the occupation probabilities at time t.

While this relation is an exact description of the system, it is not possible

to find a solution to it. Hence it is necessary to find sensible simplifications

of this expression. To this end, we concentrate on the regime close to the

phase transition. Here, as correlation lengths become large, we can average

over an area of lattice sites which is small compared to the correlated regions

without destroying the geometric properties. Consequently we define a density

of particles

ρt (x) ≈ 〈Pt (i)〉|xi−x|≪ξ⊥
(2.10)

on a continuous spatial space where the subscript reminds to average over small

areas.

Furthermore, taking the random sequential dynamics of the process into

account, we know that a move of a single particle corresponds to an advance

in time by

∆t =
1

(1 + λ + D) N
(2.11)

with N being the number of lattice sites. With respect to the large number

of sites this allows us to replace the discrete time by a quasi-continuous time.

Adding the Term −ρt (x) to (2.9) and taking the limit ∆t → 0 we end up with

the mean field equation of the diffusive contact process

∂

∂t
ρ (t, x) =

D

2d
∇2ρ (t, x) + (λ − 1) ρ (t, x) − λρ2 (t, x) . (2.12)

8



2.3. Scaling behaviour

Table 2.1.: Numerical estimates for certain critical exponents of directed perco-
lation compared with the mean field exponents of the diffusive contact process.
As we expect diffusion not change these exponents, they can be regarded valid
for the diffusive contact process too.

exponent d = 1 [7] d = 2 [14] d = 3[6] mean field
β 0.2277730(5) 0.584(4) 0.81(1) 1
ν⊥ 1.096854(4) 0.734(4) 0.581(5) 1/2
ν‖ 1.733847(6) 1.295(6) 1.105(5) 1

2.3. Scaling behaviour

To examine the over critical behaviour of (2.12) we take into account that the

average density ρ becomes a constant after a sufficiently long evolution time.

We therefore set the derivatives zero and obtain the two stationary solutions

lim
t→∞

ρ (t, x) =

{

0 for λ < 1
λ−1

λ
for λ ≥ 1

(2.13)

for the particle density. The first solutions corresponds to the absorbing and

the second one to the active state. From this result we find that

λc = 1, β = 1. (2.14)

The remaining exponents can be determined using the scale behaviour close

to the phase transition. Using relations (2.6), (2.7) and (2.12) we find

x → Λx, t → Λν‖/ν⊥t, ∆ → Λ−1/ν⊥∆, ρ → Λ−β/ν⊥ρ, D → D (2.15)

for the scaling properties of parameters and density. Here Λ plays the role of an

arbitrary dilatation factor. Because of the power law behaviour of the density

at the phase transition, the system shall stay invariant under such a rescaling.

A simple dimensional analysis of (2.12) then leads to exponents

ν⊥ =
1

2
, ν‖ = 1. (2.16)

A comparison with the results of numerical simulations, presented in table

9



2. Mean field analysis

2.1, shows quite big differences between the mean field results and the nu-

merical estimates for the exponents. This is related to the fact, that a mean

field approach neglects local fluctuations of the order parameter by definition.

Unfortunately it turns out, that these fluctuations become important for sys-

tems with spatial dimension d below a certain critical dimension dc. Above

this critical dimension the mixing between the sites is large enough to keep the

influence of the local fluctuations small. Hence mean field exponents are valid

for d ≥ dc.

In case of the directed percolation this dimension is four. To calculate ex-

ponents below these critical dimension several methods have been developed

over the past years whereas the two major ones are series expansion and field

theory. While series expansion delivers good estimates for the critical perco-

lation threshold λc and the exponents, it is not usable for high dimensional

systems due to the increasing complexity (in most cases d = 1). In contrast to

that, field theory is the appropriate tool to study phase transitions close to the

critical dimension. With more effort1 it is also possible to use field theory far

away from the critical dimension.

As we want to study the diffusive contact process in context of different

spatial dimension, we will continue with a field theoretic approach in the next

chapter.

1The lower the dimension the higher the necessary order in calculations.
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3. Field-theoretical approach

In the past years field theoretic methods, that have already been used to de-

scribe relativistic quantum scattering processes, exposed to be also a very

strong tool to investigate the scaling behaviour of phase transitions of non

equilibrium systems. Furthermore, the field theoretic renormalisation proce-

dure provides a nice interpretation of the origin and an explanation of the scale

behaviour of a desired system. As this methods are now known for several

years, we will avoid a detailed introduction into field theoretic basics here. In-

stead we will present how to set up a field theory for a a stochastic process.

Further and more detailed information may be found in [10, 13, 12].

3.1. Derivation of field theoretic action

The central quantity of a field theoretic description of a certain system is the

so called Lagrange density (Lagrangian). Integrating this density over space

and time gives the action of the system. In order to derive the Lagrangian of a

stochastic process, it is common to start from the mean field equation. For the

diffusive contact process we had (2.12) which suffers from the following penalty.

As a result of the averaging and coarse graining, the mean field model does not

respect the stochastic nature of the process. To reintroduce this property we

extend equation (2.12) by a noise term ξ (x, t):

∂

∂t
ρ (t, x) =

D

2d
∆ρ (t, x) + (λ − 1) ρ (t, x) − ρ2 (t, x) + ξ (x, t) . (3.1)

This expression is called a coarse grained Langevin equation [5]. For the diffu-

sive contact process the noise has to fulfil the condition

〈ξ (x, t) ξ (y, t′)〉 = Γρ (x, t) δd (x − y) δ (t − t′) . (3.2)

11



3. Field-theoretical approach

where the dependence on ρ prohibits particle creation in vacuum. This is

necessary to ensure the existence of the absorbing state. To reproduce this

two point correlator the probability distribution of noise and density must be

proportional to the functional

P [ξ, ρ] ∼ exp

(

−
∫

ddxdt
ξ2 (x, t)

2Γρ (x, t)

)

(3.3)

where the value of the functional describes how likely the system can be de-

scribed by a certain noise and density configuration. The parameter Γ denotes

the noise strength.

Unfortunately, a straight forward solution of (3.1) is not possible as both

fields depend on each other and both are unknown. A possible solution is

not to calculate the fields ρ and ξ in a direct way but considering observables

composed of combinations of such fields.

To this end we introduce the concept of an observable. An observable is

usually a combination of fields at certain space time points and can be computed

as an average of the fields weighted by the probability distribution. For instance

we define

A (x, t, y, t′) = ρ (x, t) ρ (y, t′) (3.4)

we then have for the observable

A (x, t, y, t′) =

∫

Dρ

∫

Dξ ρ (x, t) ρ (y, t′) P [ρ, ξ] (3.5)

where we have introduced the functional integral
∫

D1. This expression shows,

that not only one configuration (ρ, ξ) of fields is involved in calculating an

observable. Indeed all possible solutions contribute with a certain weight given

by (3.3).

As this probability would give a non zero contribution for arbitrary fields, it

is necessary to extend it by a functional delta function

δ [ρ, ξ] ∼
∫

Dρ̃ exp

(

ı

∫

ddx dt ρ̃ (x, t) · f (ρ (x, t) , ξ (x, t))

)

(3.6)

to exclude all unwanted field configurations from the averaging process. By

1see appendix A
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3.2. Observables in field theory

choosing

f (ρ) =

(

∂

∂t
− D

2d
∇2 − (λ − 1)

)

ρ + λρ2 − ξ (3.7)

only solutions of (3.1) can contribute. Therefore configurations which do not

belong to the phase space of the diffusive contact process are excluded. Col-

lecting all terms we find

O (· · · ) =

∫

DξDρDρ̃ O [· · ·] P [ρ, ξ]×

exp

(

ı

∫

ddxdtρ̃

(

∂

∂t
− D

2d
∇2 − (λ − 1)

)

ρ + λρ̃ρ2 − ρ̃ξ

)

. (3.8)

for a generic observable O. Now the noise can be eliminated in favour of the

field ρ̃ by Gaussian integration which yields

O (· · · ) =

∫

DρDρ̃O [· · ·] (ρ, ρ̃)×

exp

(

ı

∫

ddxdtρ̃

(

∂

∂t
− D

2d
∇2 − (λ − 1)

)

ρ + λρ̃ρ2 + ı
Γ

2
ρ̃2ρ

)

. (3.9)

As an outcome of this step, the new term ıΓ
2
ρ̃2ρ appeared.

This first important result is a path integral similar to the ones found in

quantum field theory. Therefore the methods developed over the past years

can be applied for further evaluation of this expression.

3.2. Observables in field theory

In the previous section we have introduced the concept of computing an observ-

able as an average over an functional of a set of fields weighted by a probability

distribution. During this calculation a new field ρ̃ appeared which turns out to

play an important role when computing observables.

If we understand (3.9) as a quantum field theory the fields ρ̃ and ρ may

be interpreted as creation and annihilation operators. In this picture, the

“measurement” of an observable corresponds to a particular “scattering process”

from an initial- into a final state. For instance the two point correlation function

C (y − x, t′ − t) ∼ 〈ρ (y, t′) ρ (x, t)〉 (3.10)

13



3. Field-theoretical approach

describes the correlation between space time point (y, t′) and (x, t). From

the view of a scattering process this corresponds to particle creation at (x, t),

propagation to (y, t′) and annihilation there:

=

∫

Dρ

∫

Dρ̃ρ (y, t′) ρ̃ (x, t) exp

(

−
∫

ddxdtL
)

(3.11)

where L denotes the Lagrangian of the system. In case of the particle density

ρ (t) =

〈

1

V

∫

ddxρ (x, t)

〉

, ρ (0) = 1 (3.12)

the scattering representation becomes more complicated. It is necessary to

respect all possible ways, how a particle could appear at the space time point

(x, t). For instance two, three, four and even infinite particle processes have to

be regarded:

, , (3.13)

Furthermore all all possible initial state space time points have to be taken into

account. Expressing this in terms of an exponential we have

ρ (t) =
1

V

∫

ddx

∫

Dρ

∫

Dρ̃ρ (x, t) exp

(∫

ddydt′ρ̃ (y, t′)

)

exp

(

−
∫

ddydtL
)

(3.14)

for the particle density. An important property of this relation is, that on the

right hand side the field ρ̃ occurs only within the exponential. Therefore the

scaling properties of the observable ’density’ are completely determined by the

field ρ which is what one would expect.

In a similar way other observables can be expressed in terms of combination

of fields (operators) at certain space time points.

3.3. Symmetries

Like in quantum field theory, symmetries of the action lead to restrictions on

parameters and fields. For the diffusive contact process, it turns out that the

fields ρ and ρ̃ can be related to each other.

14



3.4. Generating functional

From (3.9) we find

L = −ıρ̃

(

∂

∂t
− D

2d
∇2 − (λ − 1)

)

ρ − ıλρ̃ρ2 +
Γ

2
ρ̃2ρ (3.15)

for the diffusive contact process. Employing a rescaling and renaming of pa-

rameters and fields

ρ → φ = ρ

√

2λ

ıΓ
(3.16)

ρ̃ → φ̃ = −ıρ̃

√

ıΓ

2λ
(3.17)

√

ı
Γλ

2
→ g (3.18)

φ̃
∂

∂t
φ → 1

2

(

φ̃
∂

∂t
φ − φ

∂

∂t
φ̃

)

(3.19)

φ̃ · (λ − 1) · φ → φ̃κφ. (3.20)

and partial integration of the action, this expression can be rewritten as

L =
1

2

(

φ̃
∂

∂t
φ − φ

∂

∂t
φ̃

)

+ D
(

∇φ̃
) (

∇φ
)

− φ̃κφ + g
(

φ̃φ2 − φ̃2φ
)

(3.21)

and

O (· · · ) =

∫

Dφ

∫

Dıφ̃O [· · ·] exp

(

−
∫

ddx dtL
)

. (3.22)

In (3.21) the time reversal symmetry of the diffusive contact process can

easily be seen. Replacing the fields and time according to

φ (x, t) → −φ̃ (x,−t) , φ̃ (x, t) → −φ (x,−t) , −t → τ (3.23)

we re-obtain 3.21. Because of this symmetric behaviour under exchange of

fields, both fields φ and φ̃ have the same dimension and scaling properties.

3.4. Generating functional

We have shown in the previous sections, that each observable can be expressed

in terms of the fields φ and φ̃ (ρ and ρ̃ respectively). The next step is to derive

a functional, from which a desired observable can be calculated. A common

15



3. Field-theoretical approach

approach to this issue is to set up a generating functional.

Introducing external currents J and J̃ we define this generating functional

as2

Z
[

J, J̃
]

=

∫

Dφ
∫

Dıφ̃ exp
(

−
∫

xt
L +

∫

xt
φJ +

∫

xt
φ̃J̃

)

∫

Dφ
∫

Dıφ̃ exp
(

−
∫

xt
L

) (3.24)

where the denominator ensures a proper normalisation

Z
[

J, J̃
]∣

∣

∣

J,J̃=0

!
= 1 (3.25)

of this partition sum. Each desired observable can now calculated by taking

the functional variation of (3.24) and setting external currents to zero.

O (x, t · · · ) =
〈

O
[

φ, φ̃
]

(x, t) · · ·
〉

=

(

δ

δJ (x, t)
· · ·

)

Z
[

J, J̃
]

∣

∣

∣

∣

J=0,J̃=0

(3.26)

3.5. Solution of generating functional

In order to calculate observables we need to work out a more usable form of

(3.24). To this end we split the Lagrangian (3.21) into a free part

Lfree =
1

2

(

φ̃
∂

∂t
φ − φ

∂

∂t
φ̃

)

+
D

2d

(

∇φ̃
)(

∇φ
)

− φ̃κφ (3.27)

and an interacting part

Lint = g
(

φ̃φ2 − φ̃2φ
)

. (3.28)

The free part describes the propagation or movement of a free particle and

its life time and therefore contains all terms which are quadratic in the fields.

The interacting part accounts for particle creation and the limit on the particle

density.

The following calculations are common methods in quantum field theory and

are mainly taken from [12].

2
∫

xt
is short for

∫

ddx dt
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3.5. Solution of generating functional

3.5.1. Non interacting part

In this section we will focus on finding a solution to the free part of the La-

grangian. We consider the non-interacting generating functional

Z0

[

J, J̃
]

∼
∫

Dφ

∫

Dıφ̃ exp

(

−
∫

xt

Lfree +

∫

xt

φJ +

∫

xt

φ̃J̃

)

(3.29)

where the normalisation has been omitted. By shifting the fields φ and φ̃

according to

φ → φ + φ0, φ̃ → φ̃ + φ̃0. (3.30)

and requiring that the new fields φ0 and φ̃0 fulfil the differential equations

(

+
∂

∂t
− D

2d
∇2 − κ

)

φ0 = J̃ (3.31)
(

− ∂

∂t
− D

2d
∇2 − κ

)

φ̃0 = J (3.32)

we separate the externals currents in (3.29) from the functional integral. This

yields

Z0

[

J, J̃
]

∼ exp

(

1

2

∫

xt

(

φ̃0J̃ + φ0J
)

)

×
∫

Dφ

∫

Dφ̃ exp

(

−
∫

xt

L
)

(3.33)

where the latter part does not depend on the external currents anymore. It

can be integrated and gives a pure number. This number can be absorbed in a

global normalisation factor leading to

Z0

[

J, J̃
]

∼ exp

(

1

2

∫

xt

(

φ̃0J̃ + φ0J
)

)

. (3.34)

To find a solution for (3.31) and (3.32) we set

φ0 (x, t) =

∫

ddydt′J̃ (y, t′) ∆̄F (x − y, t − t′) (3.35)

φ̃0 (x, t) =

∫

ddydt′∆̄F (y − x, t′ − t) J (y, t′) (3.36)

where the ∆̄F (x, t) is called the propagator of the system. This function can

17



3. Field-theoretical approach

be expressed in terms of a Fourier integral as

∆̄F (x, t) =

∫

ddkdω
eı(kx+ωt)

(2π)d+1

1
D
2d

k2 − κ + ıω
. (3.37)

Inserting (3.35) and (3.36) into (3.34) yields

Z0

[

J, J̃
]

∼ exp

(∫

ddxdt

∫

ddydt′J̃ (x, t) ∆̄F (y − x, t′ − t) J (y, t′)

)

(3.38)

which reads in momentum space representation

Z0

[

J, J̃
]

∼ exp

(∫

ddkdωJ̃ (−k,−ω) ∆F (k, ω) J (k, ω)

)

(3.39)

where

∆F (k, ω) =
1

D
2d

k2 − κ + ıω
. (3.40)

As already pointed out, the free Lagrangian describes the propagation and life

time of a single particle. Regarding our definition of the two point correlation

function (3.11) we find

C (y − x, t′ − t) =
δ

δJ (y, t′)

δ

δJ̃ (x, t)
Z0

[

J, J̃
]

∣

∣

∣

∣

J,J̃=0

= ∆̄F (y − x, t′ − t)

(3.41)

for a free particle. As this corresponds to particle creation at (x, t) and particle

annihilation at (y, t′) the propagator is the probability that a particle diffuses

the distance y′−x in time ∆t = t′−t. As the propagator depends on differences

only, the 2-point correlation function is translational invariant.

Another important property of the propagator is, that it clearly obeys causal-

ity. This can be seen upon applying the residue theorem to the time integral

in (3.37). For ∆t > 0, when particle annihilation occurs after creation, the in-

tegration path lies in the upper half of the complex ω-plane as shown in figure

3.1(a). Instead for ∆t < 0 the curve has to be closed in the lower half (figure

3.1(b)). According to the position of the pole we find that only momenta with

|k| > κ2d
D

for ∆t > 0 (3.42)

|k| < κ2d
D

for ∆t < 0 (3.43)
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3.5. Solution of generating functional

Im ω

Re ω

D
2d

k2 − κ

(a) ∆t > 0

Im ω

Re ω

D
2d

k2 − κ

(b) ∆t < 0

Figure 3.1.: Causality of the propagator (3.37): Depending on the value of the
time argument the integration path has to be chosen in the upper or lower
half of the complex plane. Therefore only certain momenta k contribute to the
propagator. (The black point indicates the position of the pole)

can contribute to the integrals. At criticality, when κ = 0, the propagator is

nonzero for the first case ∆t > 0. Furthermore it does not vanish for large

propagation lengths x as all momenta k are included. For nonzero κ the prop-

agation length will be limited as low momenta are suppressed. In the second

case ∆t < 0 the propagator does not vanish in all cases. Indeed for non zero

κ low momenta can contribute. This is not in conflict with causality as it just

states, that if a particle annihilates in an over critical system a new particle

will be created later at some point in the lattice. And this is true, as we know

from simulations that the average particle density becomes a constant after a

sufficient amount of time in such systems.

3.5.2. Interacting part

After deriving an exact result for the free field theory, we shall now turn towards

the interacting terms. To this end we define a new functional by omitting the
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3. Field-theoretical approach

integrals and the external currents in the nominator of (3.24)

Ẑ
[

φ, φ̃
]

=
e−S

∫

DφDφ̃e−S
(3.44)

where S is the action

S =

∫

dxd dtL (3.45)

of the system. Taking the variation of this functional with respect to φ and φ̃

gives the coupled equations

δ

δφ
Ẑ

[

φ, φ̃
]

=

(

∂

∂t
+ D∇2 + κ

)

φ̃Ẑ
[

φ, φ̃
]

−
(

δ

δφ
Lint

)

Ẑ
[

φ, φ̃
]

(3.46)

δ

δφ̃
Ẑ

[

φ, φ̃
]

=

(

− ∂

∂t
+ D∇2 + κ

)

φẐ
[

φ, φ̃
]

−
(

δ

δφ̃
Lint

)

Ẑ
[

φ, φ̃
]

.(3.47)

Multiplying them with exp
(

∫

xt
φJ + φ̃J̃

)

and integrating over φ and φ̃ leads

to

JZ
[

J, J̃
]

=
(

∂

∂t
+ D∇2 + κ

)

δ

δJ̃
Z

[

J, J̃
]

−
(

δ

δφ
Lint

)[

δ

δJ
,

δ

δJ̃

]

Z
[

J, J̃
]

(3.48)

J̃Z
[

J, J̃
]

=
(

− ∂

∂t
+ D∇2 + κ

)

δ

δJ
Z

[

J, J̃
]

−
(

δ

δφ̃
Lint

)[

δ

δJ
,

δ

δJ̃

]

Z
[

J, J̃
]

(3.49)

were the fields φ and φ̃ have been replaced by δ
δJ

and δ
δJ̃

. The solution of this

equation system is

Z
[

J, J̃
]

=
exp

(

−
∫

xt
Lint

[

δ
δJ

, δ
δJ̃

])

Z0

[

J, J̃
]

exp
(

−
∫

xt
Lint

[

δ
δJ

, δ
δJ̃

])

Z0

[

J, J̃
]∣

∣

∣

J,J̃=0

(3.50)

which is an exponential series in the coupling constant g.

We will not give a proof for this result at this point, as it would go far beyond

the scope of this thesis. The interested reader may find in [12] how to derive

and proof such a solution.
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3.6. Feynman rules for diffusive contact process

The denominator in (3.50) is chosen in way that the normalisation condition

Z
[

J, J̃
]∣

∣

∣

J,J̃=0
= 1 (3.51)

holds true. In the next sections we will show, that for markovian processes this

factor is always equal to one. This behaviour is caused by the non-reversibility

of stochastic processes. We can therefore omit the denominator in the final

generating functional. We end up with

Z
[

J, J̃
]

= exp

(

−
∫

xt

Lint

[

δ

δJ
,

δ

δJ̃

])

Z0

[

J, J̃
]

. (3.52)

This generating functional can now be used to calculate observables of the

diffusive contact process by functional variation. For this, the exponential in

(3.52) has to be evaluated order by order. As the complexity of the involved

equations increases with each order, it is usually not possible to find an expres-

sion for the whole exponential. Therefore it is common to calculate observables

up to a certain order in coupling g. To ensure that this series expansion is sen-

sible, the coupling g needs to be small enough.

3.6. Feynman rules for diffusive contact process

Because of the large mathematical expressions, which usually occur when cal-

culating observables Feynman introduced a pictorial representation for prop-

agators and interaction vertices. In this notation the propagator is usually

represented by a line

∫

xt

∫

yt′
J̃ (x, t) ∆̄F (y − x, t′ − t) J (y, t′) = J̃ (x, t) J (y, t′) (3.53)

where the cross at each end of the line depicts the external current. In contrast

to quantum field theory, the arrow indicates the direction of time.3 Applying

this rule to the nominator of (3.50) and expanding the exponential we obtain

up to order g2

Z(2)
[

J, J̃
]

=
(

1 + z1 + z2 + O
(

g3
))

× exp
( )

(3.54)

3In QFT the arrow usually represents the flow of charges.
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3. Field-theoretical approach

for the functional. The superscripts remind us of the order of the functional.

The first order and second order contributions z1 and z2 are given by

z1 = − 1

1!

∫

ddxdtLint

[

δ

δJ
,

δ

δJ̃

]

, z2 =
1

2!

(∫

ddxdtLint

[

δ

δJ
,

δ

δJ̃

])2

.

(3.55)

Computing the functional variations we find

z1 = − g

1!



 −



 (3.56)

z2 = +
g2

2!



−4 − 8 − 2 + 4

+4 + + − 2



 (3.57)

for these two terms of the series expansion. We have omitted graphs like

(3.58)

because they are zero due to causality.

At his point its sensible to show that the generating functional (3.54) is

proper normalised or, in more general context, to explain why the denominator

in (3.52) will always be one. If we set the external currents to zero, all graphs

containing currents (depicted by the crosses) likewise become zero and therefor

z1 and z2 will vanish. As the exponential becomes one, we find

Z(2)
[

J, J̃
]∣

∣

∣

J,J̃=0
= 1 (3.59)

for the generating functional. This proof can easily be extend to higher orders

as follows. The only graphs which would not vanish upon setting J and J̃

zero are the closed loops. But these loops are zero due to causality. Therefore

(3.52) will always be proper normalised. This result yields for all markovian
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3.6. Feynman rules for diffusive contact process

stochastic dynamics.

Using the expansion (3.54) it is now easy to calculate an arbitrary observable

up to order g2. For instance the two point correlation function which we already

calculated for the free theory (3.41) reads now

C (y − x, t′ − t) =
δ

δJ (y, t′)

δ

δJ̃ (x, t)
Z(2)

[

J, J̃
]

∣

∣

∣

∣

J,J̃=0

= − 2g2

= ∆̄F (y − x, t′ − t) − 2g2

∫

rτ

∫

sτ ′

× (3.60)

∆̄F (r − x, τ − t) ∆̄2
F (s − r, τ ′ − τ) ∆̄F (y − s, t′ − τ ′)

with the loop being the second order contribution.

The previous introduced Feynman rules are valid in spatial space. A further

simplification can be achieved by switching to Fourier space representation as

the Lagrangian stays invariant under translation. For instance we have

C (y − x, t′ − t) =

∫

ddkdωe−ı(kx+ωt)

(2π)(d+1)/2

∫

ddk′dω′e−ı(k′y+ω′t′)

(2π)(d+1)/2

〈

φ (k, ω) φ̃ (k′, ω′)
〉

.

(3.61)

Because of translational invariance in space time we have

k′ = −k, ω′ = −ω (3.62)

which expresses momentum conservation. We then have

C (y′ − x, t′ − t) =

∫

ddkdω

(2π)d+1
expık(y−x)+ıω(t′−t) C (k, ω) (3.63)

where C (k, ω) is the two point correlation function in momentum space rep-

resentation. As this translational invariance does not only hold for the whole

correlation function but is also true at each interaction vertex, the sum of all

momenta at a vertex is zero.
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3. Field-theoretical approach

Transforming expression (3.60) into momentum space we find

C (k, ω) = ∆F (k, ω) (3.64)

+2g2∆2
F (k, ω)

∫

ddk′dω′

(2π)d+1
∆F

(

k

2
+ k′,

ω

2
+ ω′

)

∆F

(

k

2
− k′,

ω

2
− ω′

)

+ O
(

g4
)

for the two-point correlation function. This clearly shows the advantages of ex-

pressing observables in momentum space: much shorter and cleaner formula’s.

Therefore it is common to use wave vector and frequency instead of space and

time coordinates.

Taking the previous computations into account, observables of the diffusive

contact process can be expressed in terms of the following momentum space

Feynman rules:

1. The diffusion and annihilation of particles, which is called propagation in

the language of a field theory, is represented by an arrow which always

points from φ̃ to φ to remind the causal order:

∆F (k, ω) =
1

D
2d

k2 − κ − ıω
=

k, ω
. (3.65)

2. Interactions between particles are represented by vertices which corre-

spond to a factor ±g in equations:

= g, = −g (3.66)

where the former vertex describes the creation of particles and the latter

the boundary condition ρ ≤ 1.

3. Additionally the topology of a graph leads to additional combinatorial

factors which have to be taken into account:

a) The faculty of the number of initial particles. (number of external

φ̃-fields)

b) Faculty of number of final particles. (number of external φ fields)

c) Each vertex with at least one internal line gets a factor 2.
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3.7. One-Loop order of diffusive contact process

d) A vertex which is connected with two lines to another vertex or to

two incoming/two outgoing particles gets a factor of 1/2 to account

for twice counting.

4. Over indeterminate momenta, which usually occur in loops, has to be

integrated with measure
∫

ddkdω (2π)−d−1.

3.7. One-Loop order of diffusive contact

process

In the previous section we have derived the tools and equations needed for a

field theoretic description of the diffusive contact process. The next step is to

calculate the next order corrections, also called one loop contributions, to the

propagator and interacting vertices.

As the non diffusive contact process is described by the same action, the

following calculation is in its most parts similar to previous works. For instance,

similar calculations can be found in [13, 4].

3.7.1. Propagator

The propagator (the two point correlation function) to one loop order reads in

terms of Feynman rules

C (k, ω) = + + +
∞

∑

n=3









(3.67)

which, at first sight, does not look like one loop because of the series of con-

catenations of loops. However the term ’one loop’ has to be understood in the

context of vertex functions. Whereby the propagator is the inverse of the two

point vertex function. Rewriting the geometrical series in (3.67) gives

C (k, ω) =
(

Γ(1,1) (k, ω)
)−1

(3.68)
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3. Field-theoretical approach

where we have introduced the two point vertex function

Γ(1,1) (k, ω) = ∆−1
F (k, ω) − (3.69)

which is clearly of one loop order. The superscript (1, 1) reminds to the number

of initial and final particles.

Such vertex functions always contain only irreducible graphs. These are

graphs which can not be split into two sub graphs by cutting a single line (like

it is possible between the loops in (3.67)).

Replacing the pictographs by the associated formula elements the vertex

function reads

Γ(1,1) (k, ω) = ∆−1
F (k, ω)+2g2

∫

ddqdν

(2π)d+1
∆F

(

k

2
+ q,

ω

2
+ ν

)

∆F

(

k

2
− q,

ω

2
− ν

)

(3.70)

where the second term corresponds to the one loop correction which we will

compute in this section. In the following we denote the loop contribution

= −2g2

∫

ddqdν

(2π)d+1

1
D
2d

(

k
2

+ q
)2 − κ + ı

(

ω
2

+ ν
)

1
D
2d

(

k
2
− q

)2 − κ + ı
(

ω
2
− ν

)

(3.71)

as Γ
(1,1)
2 (k, ω). Carrying out the the frequency integral using the residue theo-

rem gives the expression

Γ
(1,1)
2 (k, ω) = −4g2

∫

ddq

(2π)d

1
D
2d

(4q2 + k2) − 4κ + 2ıω
. (3.72)

Counting the powers of q in the nominator and denominator shows, that the

integral will diverge for d ≥ 2. This result is very surprising, as we have pointed

out before, that field theory should be the appropriate tool close to the critical

dimension dc. Therefore one expects4 the divergence to enter the equations at

this dimension, which is four in case of the directed percolation. Fortunately it

turns out, that the loop contribution leads to a shift of the percolation threshold

κc which in turn shifts the dimension, where the divergence appears in (3.72).

To account for this issue, we consider a general property of continuous phase

transitions in association with a field theoretic requirement. At the phase

4Explanation follows later
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3.7. One-Loop order of diffusive contact process

transition correlation lengths diverge for continuous phase transitions. This

corresponds to diverging zero momenta and zero frequency component of the

two-point correlation function. Hence the condition

Γ(1,1) (0, 0)
!
= 0 (3.73)

must be fulfilled . We then find from (3.70)

κc = g2

∫

ddq

(2π)d

1
D
2d

q2 − κc

+ O
(

g4
)

(3.74)

which can be solved by iteration. To second order in g we find

κc =
2dg2

D

∫

ddq

(2π)d
q−2 (3.75)

corresponding to a non zero squared particle mass κc. But a field theory of a

critical system is characterised by a zero particle mass. It is therefore necessary

to replace κ by a squared mass

m = κ − κc + O
(

g4
)

(3.76)

which is zero at the critical point. Inserting this result into (3.72) yields

Γ(1,1) (k, ω) =
D

2d
k2 − m + ıω − g2

∫

ddq

(2π)d

∆2

D
2d

q2
(

4 D
2d

q2 + ∆2
) + O

(

g3
)

(3.77)

where we used the abbreviation

∆2 =
D

2d
k2 − 4m + 2ıω. (3.78)

This expression now diverges for d = 4 as expected.

Again this divergence seems to break the field theory as observables would

be infinity in four spatial dimensions. Indeed it will turn out later, that this

divergence can be absorbed by choosing a different set of fields and parameters

and is closely related to the scaling behaviour of the diffusive contact process.

For this purpose it is necessary to extract the diverging part of the integral.

To this end we use a procedure called dimensional regularisation, which is
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3. Field-theoretical approach

based on the observation, that the integral does not diverge for d < 4. Using

the Γ-function which can be defined as a d-dimensional integral

∫

ddq
qr

(q2 + 1)s = πd/2 Γ
(

d+r
2

)

Γ
(

s − d+r
2

)

Γ (d/2) Γ (s)
for r ≤ 2s − d (3.79)

(3.72) can be expressed as a function of the dimension d. Here d does not need

to be an integral number anymore. We then have

Γ(1,1) (k, ω) =
D

8 − 2ǫ
k2 − m + ıω +

g2µ−ǫ∆2

64π2
(

D
8−2ǫ

)2

(

∆2

16πµ2 D
8−2ǫ

)− ǫ
2

Γ
( ǫ

2
− 1

)

(3.80)

where ǫ = 4−d. Furthermore we have introduced a momentum scale µ to keep

the term within the brackets dimensionless. This is necessary to expand this

term in powers of ǫ:

Γ
(1,1)
2 (k, ω) = − g2µ−ǫ∆2

64π2
(

D
8−2ǫ

)2

(

−2

ǫ
+

(

γ − 1 + ln
∆2

16πµ2 D
8−2ǫ

)

+ O (ǫ)

)

(3.81)

where the divergent part shows up as a well defined 1/ǫ contribution.

3.7.2. Vertices

Before we can proceed with the renormalisation procedure, it is necessary to

calculate the one loop correction of the interaction vertices as well. Fortunately

it is sufficient to concern only one of the two vertices as they are symmetric

under time reversal and field swapping as show in section 3.3.

To one loop order we have

Γ(1,2) (k, ω, k′, ω′) = + k

k
2

+ k′

k
2
− k′

(3.82)

where the index indicate the momentum flow.

In the previous section it turned out that loops contain divergent contri-

butions. As the scaling behaviour is fully governed by these divergences, the

calculation can be significantly simplified by neglecting the finite contributions.
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3.8. Renormalisation

we therefore set external momenta and frequencies to zero and obtain

Γ(1,2) (0, 0, 0, 0) = 2g − 16g3

∫

ddqdν

(2π)d+1
∆2

F (q, ν) ∆F (−q,−ν) . (3.83)

Writing out the propagators and replacing κ by m gives

Γ(1,2) (0, 0, 0, 0) = 2g − 16g3

∫

ddqdν

(2π)d+1

1
(

D
2d

q2 − m + ıν
)2 (

D
2d

q2 − m − ıν
)
.

(3.84)

Here the shift κc computed in the previous section can be omitted as it would

lead to corrections of order O (g4) which are of higher precision than the one

loop contributions.

Using the residue theorem to compute the frequency integral and inserting

the Γ-function (3.79) we find

Γ(1,2) (0, 0, 0, 0) = 2g + g3 (2 − ǫ) µ−ǫ

2π2m2

(

− m

2πµ2 D
2di

)−ǫ/2

Γ
( ǫ

2

)

(3.85)

where again ǫ = 4−d is the deviation from the critical dimension and µ stands

for a momentum scale. Expanding this expression in orders of ǫ

Γ
(1,2)
2 (0, 0, 0, 0) = 2g− g3µ−ǫ

2π2
(

D
8−2ǫ

)2
ǫ
+

g3µ−ǫ

4π2
(

D
8−2ǫ

)2

(

γe − ln
−m

4πµ2
(

D
8−2ǫ

)

)

+O (ǫ)

(3.86)

yields the desired divergent part. The negative sign in the logarithm stems

from the simplification made above and would disappear if external momenta

are applied.

3.8. Renormalisation

In the previous sections it turned out that when calculating the second or-

der corrections to the propagator and vertex functions, divergences show up.

They are caused by the fact that the field theoretic description neglects the lat-

tice structure of the underlying system. Therefore the loop momenta are not

bounded by the lattice spacing as they should. Fortunately these divergences

can be absorbed by an appropriate redefinition of fields and parameters. This
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3. Field-theoretical approach

procedure is called renormalisation. Furthermore it turns out that the new

fields and parameters obtain corrections to their scaling behaviour which lead

to modifications of the mean field scaling exponents.

Starting from the original Lagrangian (3.21) we rename all fields and param-

eters as bare values denoted by subscript “0”

L0 =
1

2

(

φ0

∂

∂t
φ0 − φ0

∂

∂t
φ̃0

)

+ D0(∇φ̃0)(∇φ0) − m0φ0φ̃0 + g0

(

φ̃0φ
2

0 − φ̃2
0φ0

)

.

(3.87)

We now relate these bare values to physical parameters and fields by introducing

Z-factors. Setting

φ0 =
√

Zφφ, φ̃0 =
√

Zφ̃φ̃, D0 = ZDD, κ0 = Zmm, g0 = Zgg. (3.88)

Because of the time reversal symmetry described in section 3.3 we have

Zφ̃ = Zφ (3.89)

for the diffusive contact process. Setting Zi = 1+ δZi and neglecting quadratic

and higher powers of δZi which would be of higher order in the coupling g

yields the Lagrangian

L = L
(

φ, φ̃,D,m, g
)

(3.90)

+δZφ

1

2

(

φ̃
∂

∂t
φ − φ

∂

∂t
φ̃

)

(3.91)

+
(

δZD + δZφ

) D

2d
(∇φ̃)(∇φ) (3.92)

− (δZφ + δZm) mφφ̃ (3.93)

+

(

3

2
δZφ + δZg

)

g
(

φ̃φ
2 − φ̃2φ

)

. (3.94)

This expression contains besides the known parts additional so called counter

terms. They lead to new elements in the field theory and are usually treated

as interaction vertices as they depend on the coupling g. In terms of Feynman

rules these read:
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3.8. Renormalisation

Propagator counter vertex

= − (δZD + δZφ)
D

2d
k2 + (δZφ + δZm) m − ıδZφω

(3.95)

Interaction counter vertices

= +2

(

3

2
δZφ + δZg

)

g (3.96)

= −2

(

3

2
δZφ + δZg

)

g (3.97)

These new terms lead to further contributions to the propagator and inter-

action vertices which have to be taken in account. We then have

Γ(1,1) (k, ω) = − − (3.98)

for the inverse propagator and

Γ(1,2) (k, ω, k′, ω′) = + + (3.99)

for the three-point vertex function. Writing out these pictographs we find

Γ(1,1) (k, ω) =

(

D

2d
k2 − m + ıω

)

− u

ǫ

(

D

2d
k2 − 4m + 2ıω

)

+ (δZD + δZφ)
D

2d
k2 − (δZφ + δZm) m + ıδZφω + finite + O (ǫ)(3.100)

and

Γ(1,2) (0, 0, 0, 0) = 2g − 16g
u

ǫ
+ 2

(

3

2
δZφ + δZg

)

g + finite + O (ǫ) . (3.101)

31



3. Field-theoretical approach

where we summarised the non divergent one loop contributions as “finite” and

introduced an effective coupling

u =
g2µ−ǫ

32π2
(

D
2d

)2 , u =
Z2

D

Z2
g

µ−ǫu0. (3.102)

If we now choose the renormalisation factors as

δZφ =
2u

ǫ
, δZD = −u

ǫ
, δZm =

2u

ǫ
, δZg =

5u

ǫ
(3.103)

the divergences are cancelled by the counter terms. The renormalised propa-

gator and interaction vertices are now finite.

Due to these counter terms, observables can computed up to one loop order

now. For higher loop order calculations the renormalisation procedure has to

be repeated and gives further higher order counter terms.

3.8.1. Scaling properties

The previous calculations made it necessary to introduce a momentum scale µ.

However, when computing observables using the bare Lagrangian there would

not be such a momentum scale. Therefore equation

0
!
= µ

d

dµ
Γ
(N,Ñ)
0 (D0, g0,m0, k, ω, k′, ω′ . . .) (3.104)

must be fulfilled. Using the renormalisation prescriptions (3.88) we can relate

unrenormalised and renormalised vertex functions to each other. We find

Γ
(N,Ñ)
0 = Z

(N+Ñ)/2

φ
Γ(N,Ñ) (3.105)

which inserted into (3.104) gives the differential equation

0
!
= µ

d

dµ
Z

(N+Ñ)/2

φ Γ(N,Ñ) (µ,D, u,m, k, ω, k′, ω′ . . .) (3.106)

for the renormalised vertex functions. Applying chain rule yields

0 =

(

µ
∂

∂µ
+

N + Ñ

2
γφ + γDD

∂

∂D
+ γmm

∂

∂m
+ β

∂

∂u

)

Γ(N,Ñ) (· · · ) (3.107)
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3.8. Renormalisation

where we have introduced the flow functions

β = µ
du

dµ
= µ

du0µ
−ǫZ2

DZ−2
g

dµ
= −ǫu + 12u2 + O

(

u3
)

(3.108)

γφ =
µ

Zφ

dZφ

dµ
=

2

ǫ
· β = −2u + O

(

u2
)

(3.109)

γD =
µ

D

dD

dµ
= −u + O

(

u2
)

(3.110)

γm =
µ

m

dm

dµ
=

µ

m

dm0Z
−1
m

dµ
= +2u + O

(

u2
)

(3.111)

for parameters and fields. This differential equation system can be solved using

the method of characteristics. For this we extract the dimension of the vertex-

function as

Γ(N,Ñ) (µ,D, u,m, k, ω, k′, ω′ . . .) = µ

h

Γ(N,Ñ)
i

Γ̂(N,Ñ)
(

1, D, u,
m

Dµ2
,
k

µ
,

ω

Dµ2
, . . .

)

(3.112)

where we defined Γ̂(N,Ñ) as a dimensionless function. Here the form of the scale

free arguments has been obtained by splitting the inverse propagator as

∆−1
F (k, ω) =

D

2d
µ2 ·

(

(

k

µ

)2

− 2d

Dµ2
m + ı

2d

Dµ2
ω

)

(3.113)

where the second term is scale free.

Introducing a dilatation factor l where

µ̃ (l) = µl (3.114)

and regarding m̃, D̃ and ũ as functions of l instead of µ we again employ the

chain rule and obtain

0 =

(

−l
d

dl
+ l

dD̃

dl

∂

∂D
+ l

dm̃

dl

∂

∂m
+ l

dũ

dl

∂

∂u

)

Γ̂(N,Ñ) (. . .) . (3.115)
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3. Field-theoretical approach

Comparing this result with (3.107) we find a set of differential equations

l
d

dl
ln Γ̂(N,Ñ) (l) =

(

−
[

Γ(N,Ñ) (· · · )
]

− N + Ñ

2
γφ (l)

)

(3.116)

l
d

dl
ln D̃ (l) = γD (l) D̃ (1) = D (3.117)

l
d

dl
ln m̃ (l) = γm (l) m̃ (1) = m (3.118)

l
d

dl
ũ (l) = β (l) (3.119)

where the l dependence of flow functions on the right hand side can be expressed

in terms of the effective coupling u (l) as shown in (3.108 - 3.111). Separating

the variables and integrating leads to the formal solutions

Γ̂(N,Ñ) (l) = Γ̂(N,Ñ) (1) l
−

h

Γ(N,Ñ)(··· )
i

exp

(

−N + Ñ

2

∫ l

1

dl
γφ (l)

l

)

(3.120)

D̃ (l) = D̃ (1) exp

(∫ l

1

dl
γD (l)

l

)

(3.121)

m̃ (l) = m̃ (1) exp

(∫ l

1

dl
γm (l)

l

)

(3.122)

ũ (l) − ũ (1) =

∫ l

1

dl
β (l)

l
(3.123)

for this equations.

Observing that scale invariance is only possible if the rescaling factors only

depend on the change in the dilatation l and not on the value of l itself, the

flow functions must be independent from l. Otherwise the integrals in (3.120 -

3.123), which are the rescaling factors, would depend on the value of l. Con-

sequently the coupling u (l) must be a constant which can be expressed as

condition

0
!
= β (l) = β (u (l)) (3.124)

on the β-function. This equation has two solutions, one trivial with zero cou-

pling and the non trivial one

u∗ =
ǫ

12
+ O

(

ǫ2
)

. (3.125)
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which leads to the constant anomalous dimensions

γ∗
φ = −1

6
ǫ + O

(

ǫ2
)

(3.126)

γ∗
D = − 1

12
ǫ + O

(

ǫ2
)

(3.127)

γ∗
m = +

ǫ

6
+ O

(

ǫ2
)

. (3.128)

Inserting this results into the integrals (3.116-3.119) we find

Γ̂(N,Ñ) (l) = Γ̂(N,Ñ) (1) l
−

h

Γ(N,Ñ)(··· )
i

−N+Ñ
2

γ∗
φ (3.129)

D̃ (l) = D̃ (1) lγ
∗
D (3.130)

m̃ (l) = m̃ (1) lγ
∗
m (3.131)

ũ (l) = ũ∗ (3.132)

for the scaling behaviour of the parameters and vertex functions. Collecting all

terms a general renormalised vertex function reads

Γ(N,Ñ) (µ, q, ω,m,D, u) = (3.133)

µΓ(N,Ñ)
l

h

Γ(N,Ñ)
i

+N+Ñ
2

γ∗
φΓ̂

(

1,
q

µ
l−1,

ω

Dµ2
l−2−γ∗

D ,
m

Dµ2
l−2+γ∗

m−γ∗
D , Dlγ

∗
D , u∗

)

where the scaling behaviour shows up in terms of dilatation l. Inverse Fourier

transformation and setting l = t
− 1

2+γ∗
D we find that a generic vertex function

can always be written as

Γ(N,Ñ) (x, t,m,D) ∼ t
−

»

Γ
(N,Ñ)

–

+
N+Ñ

2
γ∗
φ

2+γ∗
D Γ̂

(

xt
− 1

2+γ∗
D ,mt

2−γ∗
m+γ∗

D
2+γ∗

D , Dt
−

γ∗
D

2+γ∗
D

)

(3.134)

where x and t represent a certain length and time variable of the function.

From this equation we read off the scaling exponents

z = 2 − ǫ/12 + O
(

ǫ2
)

, ν‖ = 1 + ǫ/12 + O
(

ǫ2
)

, ν⊥ = 1/2 + ǫ/16 + O
(

ǫ2
)

(3.135)

and the diffusive scaling exponent

α = ǫ/24 + O
(

ǫ2
)

. (3.136)
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3. Field-theoretical approach

Reminding that ρ ∼ Γ(1,0) the last exponent is

β = 1 − ǫ/6 + O
(

ǫ2
)

(3.137)

These results are equal to the directed percolation exponents. Therefore

introducing diffusion does not change the universality class, neither the scaling

exponents are influenced by the diffusion constant. This result is not surprising

as diffusion does not change the geometric properties of a system.

3.9. Crossover-Exponent

In the last section of this chapter, we will focus on the question how the diffusion

rate D changes the critical creation rate λc. To this end we consider the field

theoretic calculation at the beginning. Due to conceptional problems of the

critical field theory, we had to replace the parameter κ by mass m = κ−κc (D)

where the shift is defined by equation

κc = g2

∫

ddq

(2π)d

1
D
2d

q2 − κc

with
√

2dκc/D < |q| < Ω. (3.138)

It was chosen in a way that m is zero at criticality. The lower boundary is given

by the fact, that for q smaller than
√

2dκc/D the propagator becomes zero.

The upper boundary Ω is a cutoff scale in momentum space and should be

sent to infinity under continued renormalisation. Inserting the d-dimensional

surface element and expanding the right hand side of (3.138) in powers of q

one obtains an integral over a geometric series

κc =
4dg2

(4π)d/2 DΓ (d/2)

∫ Ω

√
2dκc/D

dq qd−3

∞
∑

i=0

(

2dq−2κc

D

)i

. (3.139)

By dimensional analysis it is easy to see that for d < 2 only the lower bound-

ary and for d > 2 only the upper boundary contributes to the integral. This

behaviour can be explained by considering the probability of return of an ordi-

nary random walk. Below two spatial dimensions this probability is non zero.

Therefor particles stay close to each other. As the amount of successful creation

operations depends on the number of surrounding particles, a change in the dif-
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3.9. Crossover-Exponent

fusion constant leads to large changes in the percolation threshold. In contrast

to that, higher spatial dimensions lead to zero return probability. Here the

particles spread over the whole system and can not inhibit the creation process

that strong.

Unfortunately it is not possible to find an analytical solution of (3.139). But

for large diffusion constants we can approximate the sum by the leading term.

Integrating the remaining part yields

λc (D) − 1 ∼











D− d
4−d for d < 2

log D
D

for d = 2

D−1 for d > 2

. (3.140)

for the crossover behaviour.

This result clearly shows that the percolation threshold approaches the mean

field prediction upon increasing diffusion rate. In terms of a crossover exponent

λc (D) − 1 ∼ D−1/φ(d) (3.141)

we find from (3.140) the values

φ (d) =











3 for d = 1

1 + log. corrections for d = 2

1 for d ≥ 3

. (3.142)

These results clearly show, that an increase of the diffusion rate turns the

critical creation rate down to the mean field prediction. This agrees with the

phenomenological proposal, that diffusion enhances the mixing between the

lattice sites. Hence local fluctuation are suppressed and the system becomes

more mean field like. For d ≥ 2 the exponents which describes the crossover

becomes a constant which can be understand by reminding that the probability

of return of a random walk becomes zero for d ≥ 2.

Our results compare very well to the predictions already made in [8] where

geometrical arguments are used to derive this result. However, an advantage

of our solution is its simple and direct way. Furthermore it is easy to extend

this calculation to other stochastic processes.
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4.1. Introduction

Beneath the analytical treatment of the diffusive contact process we used nu-

merical simulations to obtain estimates for the various exponents and in order

to support the results of our calculations. To this end, we used a Monte-Carlo

algorithm to simulate the diffusive contact process and measured the particle

density as a function of time for many different values of the parameters creation

rate λ, diffusive mixing D, spatial dimension d and lattice size. Afterwards we

determined the critical percolation threshold and the scaling exponents from

these data. We used the methods described in [4] for this purpose:

1. To obtain estimates for the percolation threshold λc, exponents δ and ν‖

it is necessary to avoid finite size effects. These occur when spatial cor-

relation lengths exceed the systems size. Therefore the time evolution of

the particle density has been measured using as large as possible systems

to suppress these influences.

Unfortunately, as correlation lengths diverge close to the phase transition

the achievable lattice size limits the precision of the estimates.

2. In contrast to that, finite size effects can be utilised to extract the third

exponent z = ν‖/ν⊥. For this purpose simulations are done at the critical

point (λ = λc) for different system sizes.

To extract proper values for the desired exponents, we used simulation times

up to 107 time steps. Together with the large lattice sizes of up to 221 sites

this leads to up to 1013 Monte-Carlo updates corresponding to several days

computing time per single simulation run. In addition to that, we had to

average the density curves over several ensembles of independent runs to obtain

smooth curves and suppress statistic fluctuations.
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4. Monte Carlo simulation

Besides this Monte-Carlo approach we used MathematicaR© to integrate equa-

tion (3.138) numerically which directly leads to critical curves. While this inte-

gration becomes unstable for small diffusion constants, it can be used to obtain

reasonable results for large diffusion rates where the Monte-Carlo takes too

much time.

4.2. Simulation application

In this section, we will give a more detailed description of the application we

used for the simulation of the diffusive contact process. As already written

in the previous section our kind of simulations consumes a large amount of

CPU time. To address this issue, we used a client-server model where a server

application was responsible for distributing the simulation parameters among

the clients and retrieving and storing the results they returned.

To model the dynamics of the diffusive contact process, we used a Monte-

Carlo algorithm which performs random sequential updates on a cubic d-

dimensional space lattice with periodic boundaries. Figure 4.1 shows the flow

chart of the central update function, which advances the system by a small step

in time on each execution. On every micro-update, this algorithm selects a ran-

dom lattice site and if this site is occupied by a particle, one of the following

moves is performed:

• Remove the particle with probability 1/(1 + λ + D).

• Create a particle on a randomly chosen neighbouring site if this site is

empty with probability λ/(1 + λ + D).

• Move the particle with probability D/(1+λ+D) to a randomly selected

neighbouring site if this site is empty.

After that, independent of whether an update succeeded or not, the time is

increased by dt = 1/(1 + λ + D)/N where N is the number of lattice sites.

To measure the evolution of density, we start with an initially fully occupied

lattice and apply the update function several times. While that we count the

particles on the lattice at exponentially distributed1 time points and compute

1As we use logarithmic plots for the evaluation we saved a lot of disk space with this
technique.
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4.2. Simulation application

Figure 4.1.: Simplified flow chart of the update sequence used for our Monte
Carlo simulations. Items: lattice[]: Boolean array representing the cubic lattice;
Rnd: function creating a random number in a given interval using the algorithm
presented in [16];
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4. Monte Carlo simulation

Table 4.1.: Parameter ranges for which we have simulated the diffusive con-
tact process in order to obtain estimates for the percolation threshold λc, the
exponents δ and ν‖ and the crossover behaviour.

dimension lattice sizes creation rate diffusion constant
1 655351 [1, 3.3] [0, 700]
2 2562, 5122, 10242 [1.003, 1.6875] [0, 700]
3 323, 643, 1283 [1.0001, 1.3203] [0, 400]
4 164, 324 [1.0, 1.4] [0, 100]

Table 4.2.: Parameter ranges for finite size simulations which have been used
to determine the third exponent z. These simulations are always done at crit-
icality. (λ = λc)

dimension lattice sizes diffusion constant
1 161, 321, 641, 1281, 2561, 5121, 10241, 20481 [0, 700]
2 42, 82, 162, 322, 642, 1282 [0, 700]
3 23, 43, 83, 163, 323 [0, 400]
4 24, 44, 84, 164 [0, 100]

the density of particles from this number. The result of such a run is a density-

time curve for a certain choice of parameters. Because of the limited system

size and stochastic nature of this process, each simulation has to be repeated

several times with the same parameters whereby the final density-time function

is an average of each ensemble of runs.

Using this set up we have simulated the diffusive contact process for several

hundred sets of parameters which cover the parameter ranges shown in table

4.1 and 4.2.

Before discussing the results in detail, we should note that most of the expo-

nents we will present in the following, have already determined to much higher

precision in previous works [7, 6, 14] for non diffusive systems. In certain cases

our estimates don’t compare very well to these results. However, as our idea

was to study the influence of diffusion on the contact process it is not sensible to

determine exponents and thresholds to high precision. Indeed the dependence

on changes in the diffusion rate is quite of more interest.
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Figure 4.2.: Time development of the particle density of a 2 + 1-dimensional
system shown in a double-logarithmic plot. The particle density saturates in
the super critical regime (green and red) and decays exponentially for sub-
critical parameters (orange to turquoise). Also the super-critical regime clearly
shows finite size effects. (Simulation parameters: Diffusion constant D = 20
fixed and lattice since as large as sensible.)

4.3. Percolation threshold

In order to extract the scaling and the crossover exponents from the numerical

data obtained by simulations, we need to know the critical creation rate. To

this end, density curves with equal diffusion rates are compared in a double-

logarithmic graph as shown in figure 4.2. In such a plot, super critical curves

are characterised by either the density approaching a constant value or at least

by a slower then power law decay if finite size effects occur. (the red and green

lines in fig. 4.2) In contrast to that, sub-critical curves show a stronger, usually

exponential, decay than a power law (orange and black in fig. 4.2). Now,

taking into account that the critical curve is always enclosed by super- and

sub-critical curves, an upper and lower boundary for the percolation threshold

can be estimated.

The accuracy of this method is limited by its sensibility to finite size effects

which become important whenever correlation lengths grow beyond the system
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Figure 4.3.: The plot shows the evolution of the particle density for different
lattice sites to evince finite size effects. Although the parameters are chosen
to be in the super-critical regime, small systems show a sub-critical behaviour
for density (blue line). (Fixed simulation parameters d = 3, D = 200 and
λ = 1.006)

size. For instance figure 4.3 shows the simulation results for the same choice of

parameters but different system sizes. Here the blue graph may be considered

sub-critical, the green is something in between and the red one shows the

correct overcritical behaviour. To detect these effects we simulated apparently

sub-critical curves again on bigger systems whenever it was possible.

The phase diagrams we derived with this method are presented in figure 4.4.

These plots clearly indicate the suggested behaviour, that the critical creation

rate approaches the mean field prediction for large diffusion constants. Indeed

for small diffusion rates, the percolation threshold stays above the mean field

value. This happens also for spatial dimensions greater than four, which shows

that a mean field description, even above the critical dimension, is not sufficient

to determine the percolation threshold of the diffusive contact process.

It is possible to understand this behaviour by considering the particle creation

mechanism. As new particles are created as neighbours of existing particles, a

small part of subsequent creation operations will fail. Therefore the effective

creation rate tends to be smaller than λ. But the mean field approach neglects
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this important property and in turn can not give the correct result.

However, with increasing diffusive mixing D, newly created particles spread

farther away from their origin before the next creation process occurs. This

decreases the number of neighbouring particles and in turn less creation pro-

cesses will fail. Therefore the effective creation rate approaches the value of

λ with increasing diffusion rate. In the limit of infinite diffusion the effective

creation rate becomes equal to λ and the mean field result becomes valid.

A second result is that for low diffusion rates the increase of the critical

creation rate slows down. This happens when the diffusion constant D be-

comes comparable to the intrinsic diffusion caused by subsequent creation and

annihilation processes.

4.4. Scaling exponents

In the following subsection we will investigate the scaling behaviour of the

diffusive contact process in order to verify the field theoretic proposal that
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the exponent δ. (Simulation parameters: dimension d = 1, diffusion constant
D = 0.4)

the introduction of diffusion does not change the directed percolation scaling

exponents.

4.4.1. Decay of density at criticality - exponent δ

Corresponding to section 2.1 the particle density ρ should decay as

〈ρ(t)〉 ∼ t−δ (4.1)

at criticality. Hence to obtain an estimate for δ we fit a power law to the critical

density-time curves. An example of this procedure is shown in figure 4.5 where

the black line represents the fitted power law.

The estimates for exponent δ obtained using this method are shown in figure

4.6. We see from the plot that in general the exponent is independent from

the diffusion rate. The increase of δ in the large diffusion regime for d = 2 is

mainly caused by the previous explained finite size effects which destroy the

power law behaviour. Moreover finite size effects enhance the error estimates.

However, despite of the deviations show these results strong evidence that
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d = 2 is mainly caused by finite size effects. The error was estimated by fitting
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Table 4.3.: Numerical estimates of scaling exponent δ averaged over the diffu-
sion rate compared to the field theoretic predictions.

dimension 1 2 3 4
δ (Monte Carlo) 0.1598(65) 0.510(78) 0.743(25) 0.971(40)
δ (field theory) 0.25 0.5 0.75 1
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the exponent δ does not depend on the value of the diffusion rate. It is therefore

sensible to calculate the diffusion average of exponent δ and compare it with

the field theoretic result. The averages are presented in table 4.3. These values

compare very well to the field theoretic prediction and as well to the estimates

given in [7, 14, 6].

4.4.2. Temporal correlation scale - Exponent ν‖

To derive the exponent ν‖ which describes the scaling behaviour of temporal

correlation we use the scaling property

〈ρ(t, λ)〉 ∼ t−δρ
(

1, t1/ν‖ |λc − λ|
)

(4.2)

of the particle density which can be derived by respecting the scale invariant

behaviour under transformation (2.15) which was introduced in section 2.

According to this relation every sub- and super-critical curve should collapse

on a single sub- and super-critical line if we plot tδρ (t) versus t |λc − λ|ν‖ when

the exponent ν‖ has the correct value. Therefore this exponent can be measured

by tuning its value until the curves in such a plot collapse.

An example of this procedure is shown in figure 4.7 where all curves clearly

collapse as supposed. Although the accuracy of this method depends on the

precision of the previous measured values of λc and δ it leads to much better

results than calculating the exponent ν‖ from β which would be another way

to derive it. (see equations (2.6) and (2.15)).

The results are plotted in figure 4.8. For this measurement the errors bars

tend to be very big which is not caused by the used method. Indeed the big

measurement errors are again caused by finite size effects which effect that not

all curves collapse for the same ν‖. Therefor the error of the measurement

increases.

However, the obtained estimates for exponent ν‖ show now relation to the

diffusion rate. Therefore we can safely state, that our simulations show that

this exponent is also independent from diffusion. Hence the Monte Carlo sim-

ulations again confirm the field theoretic proposal.

Calculating the averages of the measured exponents we obtained the values

presented in table 4.4. Comparison with field theory shows an increasing devia-
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Table 4.4.: Numerical estimates of scaling exponent ν‖ averaged over diffusion
rate compared to field theoretic result.

dimension 1 2 3 4
ν‖ (Monte Carlo) 1.76(15) 1.241(75) 1.04(10) 1.00(14)
ν‖ (field theory) 1.25 1.17 1.08 1
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method. The big error bars reflect the strong influence of finite size effects. But
a relation between ν‖ and D is not visible.

tion with decreasing dimension. This expresses the increasing influence of loop

corrections. A higher order (two loop, three loop) calculation would lead to a

better agreement. Comparing the Monte Carlo results with estimates for the

non diffusive contact process presented in [7, 14, 6] shows a good coincidence.

4.4.3. Spatial correlation scale - Exponent ν⊥

To determine the third scaling exponent we make use of the finite size effects.

Starting with an initially fully occupied lattice, the spatial correlation length

of an critical system increases with each time step where the increase depends

on exponent ν⊥. At some point the correlation length exceeds the systems

size and the particle density collapses. The time point, when this happens,

clearly depends on the system size. Therefore in finite systems, observables

also depend on the size of the system.

In our case the systems consists of N = Ld lattice sites and as L scales like
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(Fixed simulation parameters: spatial dimension d = 1, diffusion rate D = 0
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a length we have

〈ρ(t, ∆, L)〉 ∼ t−δρ

(

1, t1/ν‖ (λc − λ) ,
L

t1/z

)

(4.3)

for the density. Now, at the critical point (λc − λ) vanishes and the density

curves collapse. In the same manner as in with ν‖ the exponent z = ν‖/ν⊥ can

be obtained by tuning it to the appropriate value.

An example of this collapsing is shown in figure 4.9 where all curves coincide

on one line.

The estimates for exponent z obtained with this procedure are shown in

figure 4.10. What we see from this plot, is that basically the exponent z is

independent from the diffusion rate. But for large diffusion rates, it decreases.

This behaviour is related to the fact, that the high diffusion rates lead to

diffusion length scales which were larger than the system sizes and therefore

overrule the increasing (infinite) correlation lengths caused by simulating at

the critical point. An increase of the used system sizes would account for this
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Table 4.5.: Estimates for scaling exponent ν⊥ averaged over diffusion rates
compared with field theoretic proposal.

dimension 1 2 3 4
ν⊥ (Monte Carlo) 1.121(98) 0.717(45) 0.544(53) 0.434(64)
ν⊥ (field theory) 0.688 0.625 0.563 0.5

issue. Unfortunately due to the limited computing power it was not possible

to further increase the used system sizes. Hence we exclude the affected data

points from further evaluation.

Using relation z = ν‖/ν⊥ we derive the spatial scaling exponent ν⊥ using

the values obtained for z and ν‖. Averaging them over the different diffusion

rates yields the results presented in table 4.5. Again the deviation of the field

theoretic predictions increases with decreasing spatial dimension d due to the

one loop precision of the results. Again the Monte Carlo results compare well

to previous non diffusive contact process results presented in [7, 14, 6].

52



4.4. Scaling exponents

 1e-04

 0.001

 0.01

 0.1

 1

 10

 0.1  1  10  100  1000

D

λ
c
(D

)
−

1

d = 1
d = 2
d = 3
d = 4
x−1/2.59(3)

x−1/1.27(6)

x−1/0.98(8)

x−1/1.0(1)
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4.4.4. Crossover behaviour

Derived all scaling exponents, the last task is to focus on the crossover from

the low diffusion, directed percolation regime to the high diffusion, mean field

behaviour. According to (3.141) we expect

λc − 1 ∼ D−1/φ (4.4)

for large diffusion rates D. Therefore we take the data already presented in

figure 4.4 and plot λc − 1 against D in a double-logarithmic manner as shown

in figure 4.11.

In such a double logarithmic plot, straight lines over at least two decades

indicate a power law behaviour, which is clearly the case for our data points

in the large diffusion rate regime. The deviation from power law for small

diffusion constants is not surprising, as the intrinsic diffusion becomes more

important than the explicit diffusion process in this parameter region. In order

to derive the crossover exponent φ we fit a power law at each curve which is

also shown in figure 4.11.
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Table 4.6.: Estimates of the cross-over exponent φ for spatial dimension
d = 1, 2, 3, 4 derived from Monte Carlo simulations compared to field theo-
retic result.

dimension 1 2 3 4
φ (Monte Carlo) 2.59(3) 1.27(6) 0.98(8) 1.0(1)
φ (field theory) 3 1 + logarithmic corrections 1 1

The obtained exponents are collected in table 4.6. Comparison with field

theoretic predictions shows a good agreement even for low spatial dimension.

This is related to the fact that the cross-over behaviour is related to the d-

dimensional random walk behaviour.

4.5. Numeric Solution of loop correction

So far we verified the field theoretic predictions (3.140) in the large diffusion

regime. However for small diffusion rates, analytical solution of (3.139) is easy.

Hence we tried to numerically integrate this relation using Mathematica R©.

The results of this integration are presented in figure 4.12 and compared

with the values obtained from Monte Carlo simulations. In the large diffusion

regime the agreement is very well and the numeric integration clearly resembles

the Monte Carlo estimates. Unfortunately with decreasing diffusion rate D the

suffers from numerical instabilities (divergences) which render the results in this

region unusable. Hence we shall state that a numerical integration of (3.138)

does not yield improvements over analytical results in this case.

Despite this backstroke the plot shows that for spatial dimension d = 1

the numerical integration becomes almost exact over at least two decades

and does not show the divergent behaviour as in spatial dimensions d > 2.

This behaviour is very surprising and has its origin in the behaviour of the

d-dimensional random walk.
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5. Concluding remarks

Motivated by a previous work of Dantas et al. [2] we considered the diffusive

extension of the contact process in this work. We have studied the influence of

diffusion of particles on universal properties of the contact process using field

theoretic calculations and verified them using Monte Carlo simulations.

Naturally, introduction of diffusion does not change geometric properties of a

model. Therefore one expects that scaling exponents are not affected by intro-

ducing a short range diffusion process. Using dimensional regularisation and

multiplicative renormalisation of the field theoretic model we confirmed this.

Furthermore the field theoretic treatment predicted that the scaling exponents

are independent from the diffusion rate and equal to the directed percolation

exponents. Therefore the diffusive contact process also belongs into the di-

rected percolation universality class of non-equilibrium absorbing state phase

transitions.

Further on the field theoretic calculations yield, that the critical control

parameter λc depends on the diffusion constant and approaches the mean field

value as a power law for large diffusion rates (3.140). The exponent φ of this

power law is governed by the properties of the d-dimensional random walk and

therefore strongly depends on the spatial dimension if d < 2. Indeed for higher

space dimensions φ becomes a constant. This result confirms a previous work

by Konno [8] but was derived in a much simpler way.

To verify the predictions of the field theoretic model we used numeric sim-

ulations. Hence we simulated the diffusive contact process for many different

system parameters using a Monte Carlo based algorithm. Analysis of the nu-

merical data yielded estimates for exponents and critical creation rates. The

results compared well with the analytical model. Moreover the good agree-

ment shows evidence that field theory is a powerful tool for studying such

non-equilibrium absorbing state phase transitions.

Finally we compared the Monte Carlo results with a numeric solution of
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(3.139) were we showed that in this case the analytical calculation can not

improved by numerical integration. Despite that we observed that in one spa-

tial dimension the one loop correction when evaluated numerically is in better

agreement with the Monte Carlo results than the results in three or four dimen-

sions. This is surprising as one expects loop corrections to be more relevant in

low dimensional systems. A further investigation of this issue may be sensible.
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A. Introduction on field

mathematics

In this appendix we would like to give a very short introduction into the for-

malism used for fields, functional integrals and functional derivatives in this

work.

The fields we use in our calculations are basically variables which are labelled

with continuous indexes. For instance we can define a continuous density field

from a density defined on a lattice in limit of a zero lattice constant. Con-

sidering a two-dimensional lattice with integer indexes i and j we introduce

a density ρij at each lattice site. Let ∆ be the lattice constant - this is the

spacing between two nearest neighbouring sites. We can now define a space

and time coordinate setting

x = i · ∆, t = j · ∆ (A.1)

which become continuous in the limit ∆ → 0:

ρ (x, t) = lim
∆→0

ρij. (A.2)

Using this definition it is now possible to define a functional integral as a

product of integrals at each lattice point. We find

∫

Dρ = lim
∆→0

∞
∏

i,j

∫

dρij (A.3)

for a functional integral. Here we absorbed the normalisation factor into the

integral measure. Moreover a functional derivative (variation) can be defined

as the result of
δ

δρ (x, t)
= lim

∆→0

δ

δρij

. (A.4)
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Finally it is also possible to integrate the space and time coordinates. This

corresponds to a sum of the fields over all space time points:

∫

dx

∫

dtρ (x, t) = lim
∆→0

∞
∑

i=−∞

∞
∑

j=−∞

ρij (A.5)
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B. Data

The Compact-Disc attached to the back cover of this thesis contains a copy of

the data created during working out the thesis. The directory structure is as

follows:

/data Exponents derived from Monte-Carlo simulations.

/data/critical, /data/finite-size Density-time curves obtained from Monte

Carlo simulations split into single files.

/data/matlab Matlab functions used for analysis of numerical data as well as

a copy of the matlab workspace.

/mathematica Mathematica notebooks created for field theoretic renormali-

sation and numerical integration.

/src This directory contains the entire source code of the application used for

the Monte Carlo simulations. The simulation is split into a client- and

a server-program. While the client application can be used stand alone

using command line switches, the server application is responsible for dis-

tributing simulation parameters over a network and collecting simulation

results from computing clients. Hence client programs have to attach to

a running server application in order to do something useful. The server

stores its data in a single sqlite1-database file. In order to compile it a

recent libsqlite3 must be available. To compile one of the programs, copy

the directory to your hard-disc, dive into the directory with a shell and

type

make cp-client-<dimension>-<lattice-length>

make cp-data-server

1http:\\www.sqlite.org
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where <dimension> and <lattice-length> have to be replaced by the

desired numbers.

/thesis Latex source code of diploma thesis
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